

Laboratorio Europeo di Riferimento per i Parassiti
Dipartimento di Malattie Infettive
Reparto di Parassitosi Alimentari e Neglette Istituto Superiore di Sanità

IDENTIFICAZIONE A LIVELLO DI ASSEMBLAGGIO DI CISTI DI Giardia duodenalis MEDIANTE PCR/RFLP

INDICE

1	SCOPO E CAMPO DI APPLICAZIONE	2
2	PRINCIPIO DEL METODO	2
3	BIBLIOGRAFIA E RIFERIMENTI	3
4	DEFINIZIONI	4
5	APPARECCHIATURA DI PROVA	4
6	REATTIVI E MATERIALI	5
7	PROCEDIMENTO	7
	7.1 Preparazione del campione di prova	7
	7.2 Esecuzione della prova	7
8	ESPRESSIONE DEI RISULTATI	14
9	CARATTERISTICHE DEL METODO	14
10	MISURE DI SICUREZZA DA OSSERVARE	14

rev. 3, 2024 pagina 1 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette Istituto Superiore di Sanità

1 SCOPO E CAMPO DI APPLICAZIONE

Il presente documento definisce un metodo di prova interno per determinare, mediante PCR/RFLP, il genotipo/assemblaggio di protozoi appartenenti alla specie *Giardia duodenalis*. Il metodo può essere applicato a feci di origine umana o animale già diagnosticate positive per la presenza di cisti di *Giardia*.

2 PRINCIPIO DEL METODO

La reazione a catena della polimerasi (PCR) è una tecnica di biologia molecolare che consente la moltiplicazione (amplificazione) di frammenti di acidi nucleici specifici dei quali si conoscono la sequenza nucleotidica iniziale e terminale (coppia di oligonucleotidi). Se una specie possiede una porzione di DNA caratteristica per composizione e/o dimensione, è possibile scegliere una coppia di oligonucleotidi che permetta la sua amplificazione esclusivamente per quella specie. L'amplificazione PCR è caratterizzata da alta sensibilità e specificità. La nested-PCR è una variante della tecnica di PCR, serve per ottenere una maggiore sensibilità del metodo utilizzando in successione due distinte reazioni di amplificazione. Nella prima reazione di PCR si utilizza una coppia di primers esterni mentre nella seconda si utilizzano primers più interni rispetto al frammento di DNA da amplificare (DNA target).

Alla tecnica PCR è possibile abbinare la tecnica del "Restriction Fragment Length Polymorphism" (RFLP), ovvero l'analisi dei frammenti di restrizione. La tecnica permette di distinguere due frammenti di PCR mediante digestione enzimatica con una o più endonucleasi, enzimi in grado di tagliare il DNA a livello di brevi e specifiche sequenze oligonucleotidiche. In questo caso è possibile con una singola coppia di primer amplificare la stessa porzione di DNA da specie diverse e distinguerle successivamente in base alle dimensioni e al numero dei frammenti di DNA ottenuti dopo digestione enzimatica.

I protozoi parassiti del genere *Giardia* infettano la porzione superiore dell'intestino dei vertebrati, compreso l'uomo. Il ciclo vitale del parassita consta di una fase vegetativa, il trofozoita dotato di flagelli e binucleato in grado di riprodursi per scissione binaria all'interno dell'intestino dell'ospite, e di una fase di resistenza, la cisti, espulsa con le feci ed in grado di propagare l'infezione. In seguito all'ingestione da parte di un nuovo ospite, la cisti si schiude liberando due trofozoiti in grado di colonizzare l'intestino. Nove specie sono state identificate in base alla specificità d'ospite, alla morfologia ed al fenotipo: *Giardia agilis* negli anfibi, *G. varani* nei sauri, *G. muris* e *G. microti* nei roditori, *G. cricetidarum* nei cricetidi, *G. peramelis* nel quenda, *G. ardeae* e *G. psittaci* negli uccelli e *G. duodenalis* (sinonimi: *G. lamblia; G. intestinalis*) nei mammiferi. *Giardia duodenalis* è l'agente eziologico della giardiasi, ed è l'unica specie in grado di infettare sia l'uomo che altri mammiferi, compresi animali d'allevamento e da compagnia. *Giardia duodenalis* risulta suddivisa in otto sette assemblaggi (A-H), indistinguibili a livello morfologico, ma identificabili in base all'analisi genetica. Mentre gli assemblaggi A e B sono frequentemente isolati dall'uomo e da un ampio spettro di altri mammiferi, i restanti assemblaggi (C-H) risultano avere una spiccata specificità d'ospite e infettano l'uomo sporadicamente (Monis et al., 1999, Monis et al., 2003; Sulaiman et al., 2003; Ryan et al., 2021; Wielinga et al., 2023).

I metodi molecolari basati sulla PCR/RFLP hanno permesso di identificare a livello di assemblaggio le cisti di *G. duodenalis* presenti in campioni fecali di origine umana ed animale.

Un metodo utilizzato frequentemente per la diagnostica molecolare si basa sull'amplificazione del gene della beta-giardina, codificante per una proteina strutturale di *G. duodenalis*. Gli oligonucleotidi, utilizzati per le due reazioni di PCR e la successiva caratterizzazione del frammento di amplificazione mediante digestione enzimatica, permettono l'identificazione dei singoli assemblaggi di *G. duodenalis* (Sulaiman et al. 2003, Lalle et al. 2005).

Le dimensioni dei frammenti del gene della beta-giardina ottenuti con la prima e la seconda PCR sono rispettivamente di 723 e 511 paia di basi (bp).

In tabella A sono riportate le dimensioni dei frammenti di digestione del prodotto di PCR del gene della beta-giardina per i diversi assemblaggi di *G. duodenalis*.

rev. 3, 2024 pagina 2 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

Tabella A. Dimensione dei frammenti di digestione (in paia di basi) attesi dopo digestione con l'enzima di restrizione HaellI del gene beta-giardina per ogni assemblaggio di Giardia duodenalis

Assemblaggio	Frammenti di digestione
А	201, 150, 110, 50
В	150, 117, 110, 84, 26, 24
С	194, 150, 102, 50, 15
D	200, 194, 117
E	186, 150, 110, 26, 24, 15
F	186, 150, 110, 50, 15
G	194, 165, 102, 50

Utilizzando la tecnica PCR/RFLP, è possibile distinguere tra loro gli assemblaggi A, B, C, D, E, F e G sulla base del numero e della dimensione dei frammenti di digestione ottenuti con l'enzima *HaelII* a partire dal frammento da 511 bp della beta-giardina.

3 BIBLIOGRAFIA E RIFERIMENTI

Adam RD. (2001) Biology of Giardia lamblia. Clin Microbiol Rev. 14, pp. 447-475.

Amar CF, East CL, Grant KA, Gray J, Iturriza-Gomara M, Maclure EA, McLauchlin J. (2005) Detection of viral, bacterial, and parasitological RNA or DNA of nine intestinal pathogens in fecal samples archived as part of the english infectious intestinal disease study: assessment of the stability of target nucleic acid. Diagn Mol Pathol. 14, pp.90-96.

Horiuchi K, Zinder ND. (1975) Site-specific cleavage of single-stranded DNA by a *Hemophilus* restriction endonuclease. Proc Natl Acad Sci U S A. 72, pp. 2555-2558.

UNI EN ISO 20837:2006. Microbiologia di alimenti e mangimi per animali Reazione a catena di polimerizzazione (PCR) per la ricerca dei microrganismi patogeni degli alimenti Requisiti per la preparazione del campione per la ricerca qualitativa.

UNI EN ISO 20838:2006. Microbiologia di alimenti e mangimi per animali Reazione a catena di polimerizzazione (PCR) per la ricerca dei microrganismi patogeni degli alimenti Requisiti per l'amplificazione e la ricerca per metodi qualitativi.

Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, Cacciò SM. (2005) Genetic heterogeneity at the betagiardin locus among human and animal isolates of *Giardia duodenalis* and identification of potentially zoonotic subgenotypes. Int J Parasitol. 35, pp. 207-213.

Lebbad M, Mattsson JG, Christensson B, Ljungström B, Backhans A, Andersson JO, Svärd SG. (2010) From mouse to moose: multilocus genotyping of *Giardia* isolates from various animal species. Vet Parasitol. 168, pp. 231-239.

Monis, PT, Andrews, RH, Mayrhofer, G, Ey, PL. (1999) Molecular systematics of the parasitic protozoan *Giardia intestinalis*. Mol Biol Evol. 16, pp. 1135-1144.

Monis, PT, Andrews, RH, Mayrhofer, G, Ey, PL. (2003) Genetic diversity within the morphological species *Giardia intestinalis* and its relationship to host origin. Infect Genet Evol. 3, pp. 29-38.

Ryan, UM, Feng, Y, Fayer, R, Xiao, L. (2021) Taxonomy and molecular epidemiology of *Cryptosporidium* and *Giardia* - a 50 year perspective (1971-2021). Int J Parasitol. 51(13-14):1099-1119.

Sato, S, Hutchison, CA III, Harris, Jl. (1977) A thermostable sequence-specific endonuclease from *Thermus aquaticus*. Proc. Natl. Acad. Sci. USA 74, pp. 542-546.

rev. 3, 2024 pagina 3 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

Sulaiman, IM, Fayer, R, Bern, C, Gilman, RH, Trout, JM, Schantz, PM, Das, P, Lal, AA, Xiao, L. (2003) Triosephosphate isomerase gene characterization and potential zoonotic transmission of *Giardia duodenalis*. Emerg Infect Dis. 9, pp. 1444-1452.

Thompson RC, Hopkins RM, Homan WL. (2000) Nomenclature and genetic groupings of *Giardia* infecting mammals. Parasitol Today. 16, pp. 210-213.

Wielinga, C, Williams, A, Monis, P, Thompson, RCA. (2023) Proposed taxonomic revision of *Giardia duodenalis*. Infect Genet Evol. 111:105430.

UNI EN ISO 22174: 2005. Microbiologia di alimenti e mangimi per animali – reazione a catena di polimerizzazione (PCR) per la ricerca di microrganismi patogeni negli alimenti – requisiti generali e definizioni.

4 DEFINIZIONI

Beta-Giardina, sequenza codificante una proteina strutturale, componente del citoscheletro di Giardia.

Oligonucleotide, breve sequenza (15/30 basi nucleotidiche) utilizzata per amplificare un frammento specifico di DNA.

Set A, miscela di 2 oligonucleotidi che amplificano un frammento di 723 paia di basi del gene della betagiardina in tutti gli assemblaggi di *G. duodenalis*.

Set B, miscela di 2 oligonucleotidi che amplificano il frammento interno, di 511 paia di basi, del gene della beta-giardina in tutti gli assemblaggi di *G. duodenalis*.

Controllo positivo di estrazione, aliquote di feci contenenti cisti di *G. duodenalis*, trattate nella stessa sessione di lavoro dei campioni in esame per verificare la corretta conduzione del protocollo di estrazione del DNA.

Controllo positivo di amplificazione, DNA genomico purificato da feci contenenti cisti di *G. duodenalis*. È utilizzato nelle sessioni di amplificazione per verificare l'efficienza del sistema PCR.

Controllo negativo di amplificazione, acqua grado reagente. È utilizzato negli esperimenti di amplificazione per verificare l'assenza di contaminazioni nella reazione PCR.

Enzimi di restrizione. Gli enzimi di restrizione sono enzimi di origine batterica che tagliano il DNA in punti specifici, diversi per ciascun enzima, permettendo così di frammentare il DNA in maniera precisa e riproducibile. Gli enzimi di restrizione tagliano sequenze specifiche del DNA, di lunghezza variabile da 4 a 8 basi e diverse per ciascun enzima. La concentrazione degli enzimi si esprime in unità enzimatiche (U) e, nel caso delle endonucleasi di restrizione, 1 unità corrisponde alla quantità di enzima necessaria a digerire completamente un microgrammo di DNA in 1 ora alla temperatura ottimale.

Inoltre, nel presente documento sono utilizzate le definizioni e la terminologia della norma UNI EN ISO 22174.

5 APPARECCHIATURA DI PROVA

- 5.1 Centrifuga da banco per provette da 1,5 mL, 10.000 g
- 5.2 Congelatore, temperatura ≤ -15°C
- 5.3 Omogeneizzatore vibrante da banco per provette (tipo, FastPrep Instrument)
- 5.4 Agitatore a ruota per provette
- 5.5 Termoblocco vibrante a temperatura variabile da 25 a 100°C
- 5.6 Termociclatore per PCR
- 5.7 Frigorifero, 1-8°C
- 5.8 Sistema per elettroforesi orizzontale completo di accessori e alimentatore di corrente
- 5.9 Sistema per acquisizione di immagini

rev. 3, 2024 pagina 4 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

- 5.10 Micropipette (volumi variabili 1-1000 µL)
- 5.11 Sistema di produzione di acqua di grado reagente
- 5.12 Agitatore Vortex
- 5.13 Bilancia analitica
- 5.14 Transilluminatore UV
- 5.15 Agitatore orbitante
- 5.16 Qiaxcel, sistema di elettroforesi verticale capillare

6 REATTIVI E MATERIALI

- 6.1 **Provetta per la lisi.** Provetta con tappo a vite e contenente biglie di varie dimensioni (tipo, Lysis Matrix E tube, FastDNA Spin kit for Soil, MP Biochemicals) reperibili in commercio.
- 6.2 **Tampone di risospensione.** Soluzione contenente sodio fosfato reperibile in commercio (tipo Sodium Phosphate Buffer, FastDNA Spin kit for Soil, MP Biochemicals). La soluzione è conservata secondo le specifiche del produttore.
- 6.3 **Tampone di omogeneizzazione.** Soluzione reperibile in commercio (tipo Tampone MT, FastDNA Spin kit for Soil, MP Biochemicals). Conservare a temperatura ambiente.
- 6.4 **Tampone di lisi.** Soluzione reperibile in commercio (tipo Tampone PPS, FastDNA Spin kit for Soil, MP Biochemicals). Conservare a temperatura ambiente.
- 6.5 **Resina di Silice.** Soluzione reperibile in commercio (tipo Binding Matrix, FastDNA Spin kit for Soil, MP Biochemicals). Conservare a temperatura ambiente.
- 6.6 **Colonna di recupero.** Materiale reperibile in commercio (tipo FastDNA Spin kit for Soil, MP Biochemicals, ed identificata dal produttore come "SPIN filter").
- 6.7 **Tampone di lavaggio.** Soluzioni reperibili in commercio (tipo FastDNA Spin kit for Soil, MP Biochemicals). Preparare secondo le specifiche del produttore, identificare tale soluzione con la sigla 'SEWS-N'. Conservare a temperatura ambiente.
- 6.8 **Provetta di raccolta.** Provetta da 2 mL reperibile in commercio (tipo FastDNA Spin kit for Soil, MP Biochemicals, ed identificata dal produttore come "catch tube").
- 6.9 **Tampone di eluizione.** Soluzione reperibile in commercio (tipo, FastDNA Spin kit for Soil, MP Biochemicals, e identificata dal produttore come DES). Conservare secondo le specifiche del produttore.
- 6.10 **PCR master mix.** Soluzione reperibile in commercio adatta alla conduzione di esperimenti di amplificazione PCR. Conservare secondo le specifiche del produttore. Nel caso si utilizzi una confezione di grandi volumi il prodotto viene dispensato in aliquote da 1-2 mL, e vengono mantenute le specifiche di conservazione della confezione di origine.
- 6.11 **Oligonucleotidi.** Preparazione commerciale (tabella B). Il prodotto liofilizzato viene ricostituito secondo le indicazioni del produttore ad una concentrazione di 100 pmoli/µL con acqua di grado reagente (5.11). L'avvenuta ricostituzione viene riportata con data e firma nel rapporto tecnico allegato agli oligonucleotidi dalla ditta produttrice. Conservare il prodotto liofilizzato in congelatore (5.2) fino a un massimo di 20 anni. Conservare il prodotto ricostituito in congelatore (5.2) fino ad un massimo di 10 anni.
- 6.12 **Set A.** Miscela di oligonucleotidi (6.11) utilizzata per la PCR. La miscela è ottenuta combinando un pari volume degli oligonucleotidi BGFor71 e BGRev794 diluiti alla concentrazione di 20 pmol/μL con acqua grado reagente o MilliQ (6.21). La concentrazione finale corrisponde a 20 pmoli/μL di ciascun oligonucleotide. Aliquote di 100μL vengono preparate e conservate in congelatore (5.2) fino a un massimo di 10 anni.
- 6.13 **Set B.** Miscela di oligonucleotidi (6.11) utilizzata per la PCR. La miscela è ottenuta combinando un pari volume degli oligonucleotidi BGintFor e BGintRev diluiti alla concentrazione di 20

rev. 3, 2024 pagina 5 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

pmol/ μ L con acqua grado reagente o MilliQ (6.21). La concentrazione finale corrisponde a 10 pmoli/ μ L di ciascun oligonucleotide. Aliquote di 100 μ L vengono preparate e conservate in congelatore (5.2) fino a un massimo di 10 anni.

Tabella B. Sequenza degli oligonucleotidi che compongono il set-A (6.12) e il set-B (6.13), relativi codici e sequenze nucleotidiche amplificate

Sequenza oligonucleotidi	Codice	Sequenza amplificata
5'-CCCGACGACCTCACCCGCAGTCG-3' 5'-GCCGCCCTGGATCTTCGAGACGA-3'	BGFor71 BGRev794	Beta-giardina (primers esterni)
5'-GAACGAACGAGATCGAGGTCCG-3' 5'-CTCGACGAGCTTCGTGTT-3'	BGinfFor BGintRev	Beta-giardina (primers interni)

- 6.14 **Loading buffer**, prodotto commerciale che permette di eseguire l'elettroforesi di molecole di DNA; può essere incluso nella soluzione PCR master mix di cui al punto 6.10. Conservare secondo le specifiche del produttore.
- 6.15 **Agarosio e agarosio ad alta risoluzione**, prodotti commerciali definiti adatti alla conduzione di elettroforesi per molecole di DNA. L'agarosio ad alta risoluzione permette di migliorare la separazione di molecole di DNA di dimensioni ridotte (tra 25 e 700 paia di basi). Conservare a temperatura ambiente fino a un massimo di 24 mesi.
- 6.16 **TAE soluzione 50x**, prodotto commerciale (2M Tris-acetato, 50mM EDTA, pH 8.2 8.4 a 25°C). Conservare a temperatura ambiente fino a un massimo di 24 mesi.
- 6.17 **TAE soluzione 1x**, preparazione di 1000 mL: prelevare 20 mL dalla soluzione 50x e portare il volume a 1000 mL con acqua distillata. Preparare al momento dell'uso.
- 6.18 **Intercalante del DNA -** prodotto commerciale in grado di inserirsi nei filamenti di DNA. Utilizzato per visualizzare i prodotti di amplificazione su gel di agarosio
- 6.19 **L50**, prodotto commerciale contenente molecole marcatrici di peso molecolare per DNA. Viene ritenuto idoneo ogni prodotto commerciale che contenga molecole multiple di 50 bp nel range 50-500 bp. Conservare in frigorifero (5.7) secondo le specifiche del produttore.
- 6.20 **L100**, prodotto commerciale contenente molecole marcatrici di peso molecolare per DNA. Viene ritenuto idoneo ogni prodotto commerciale che contenga molecole multiple di 100 bp nel range 100-1500 bp. Conservare in frigorifero (5.7) secondo le specifiche del produttore.
- 6.21 Acqua grado reagente o Milli-Q, resistività \geq 18 M Ω /cm.
- 6.22 **Campione fecale di riferimento,** feci contenenti cisti di *G. duodenalis*. Conservare in frigorifero (5.7) fino ad un massimo di <u>10 anni</u>.
- 6.23 **DNA di riferimento:** DNA genomico purificato da feci contenenti cisti di *G. duodenalis* oppure da trofozoiti di *G. duodenalis* clone WBC6 (Assemblaggio A) provenienti da coltura in vitro. Conservare in congelatore (5.2) fino ad un massimo di 10 anni.
- 6.24 **Enzima di restrizione HaellI:** enzima reperibile in commercio adatto alla conduzione di esperimenti di digestione enzimatica del DNA (per esempio della New England Biolabs). Conservare secondo le specifiche del produttore. La sequenza oligonucleotidica specifica riconosciuta da questo enzima è riportata in tabella C.

Tabella C. Sequenza di DNA specifica riconosciuta dall' enzima di restrizione HaellI

Enzima di restrizione	Sequenza riconosciuta
Haelll	5'GC▼CC3' 3'CC▲GG5'

6.25 **Tampone di restrizione:** Soluzione a pH e concentrazione salina nota reperibile in commercio adatta alla conduzione di esperimenti di digestione enzimatica del DNA e venduta unitamente ai

rev. 3, 2024 pagina 6 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

rispettivi enzimi di restrizione. Conservare secondo le specifiche del produttore.

- 6.27 **QIAxcel high resolution kit:** prodotto commerciale della Qiagen, da usare con il Qiaxcel (5.16). Include cartucce di separazione e soluzioni per la preparazione e per la corsa dei campioni da analizzare. Conservare i singoli componenti secondo le specifiche del produttore.
- 6.28 **Alignment marker:** prodotto commerciale della Qiagen, da usare con il Qiaxcel (5.16). Conservare secondo le specifiche del produttore
- 6.29 **DNA size marker**: prodotto commerciale della Qiagen, da usare con il Qiaxcel (5.16). Conservare secondo le specifiche del produttore.

7 PROCEDIMENTO

7.1 Preparazione del campione di prova

Le feci pervenute e contenenti cisti di *Giardia* vengono controllate per la verifica del loro stato di conservazione. Le provette devono essere integre e non vi deve essere traccia di perdita del contenuto.

Qualora l'operatore reputi che il campione di prova non sia idoneo all'esecuzione del test, il test stesso non viene eseguito.

7.2 Esecuzione della prova

7.2.1 Estrazione del DNA dal campione fecale da sottoporre al test

Se non diversamente specificato, la procedura viene eseguita a temperatura ambiente.

Ogni sessione di prova prevede che il campione fecale di riferimento (6.22) venga sottoposto alla procedura di estrazione ed identificato come 'controllo positivo di estrazione'.

Nota bene: il materiale fecale di riferimento (6.22), conservato in etanolo al 50%, prevede un lavaggio con acqua grado reagente (6.21) a 5000 rpm per 5 minuti per eliminare l'etanolo. Al pellet vengono aggiunti 400 µL di acqua grado reagente (6.21) e si procede come indicato nel punto "a".

- a) Trasferire 450 µL del campione fecale in una provetta per la lisi (6.1).
- b) Aggiungere 978 μ L di tampone di risospensione (6.2) e 122 μ L di tampone di omogeneizzazione (6.3).
- c) Omogenizzare il campione mediante omogeneizzatore vibrante da banco (5.3) a velocità 6 per 40 secondi.
- d) Centrifugare (5.1) la provetta a 12000 rpm per 10 minuti.
- e) Trasferire la fase liquida in una provetta da 2 mL e aggiungere 250 µL di tampone di lisi (6.4), miscelare invertendo la provetta per 10 volte.
- f) Centrifugare (5.1) la provetta a 12000 rpm per 5 minuti.
- g) Nel frattempo, agitare su vortex per 30 sec la resina di silice (6.5).
- h) Trasferire la fase liquida, ottenuta dopo centrifugazione (punto "f"), in una nuova provetta da 2 mL, aggiungere 1 mL di resina di silice (6.5) e miscelare in agitatore a ruota (5.4), o invertendo la provetta a mano, per 2 min.
- i) Collocare la provetta in porta-provette per 3 min. per permettere la sedimentazione della resina di silice (6.5).
- j) Rimuovere delicatamente 500 μL di sopranatante facendo attenzione a non disturbare la resina di silice (6.8).
- Risospendere la resina di silice (6.5) con il sopranatante rimasto, utilizzando una micropipetta (5.10).
- Trasferire 600 μL della miscela in una colonna di recupero (6.6) alloggiata in provetta di raccolta (6.8).
- m) Centrifugare (5.1) la provetta con la colonna di recupero (6.6) a 12000 rpm per 1 minuto.

rev. 3, 2024 pagina 7 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

- n) Vuotare la provetta di raccolta (6.8).
- o) Ripetere i punti da "l" a "n" fino al completo trasferimento di tutta la resina di silice (6.5) nella colonna di recupero (6.6).
- p) Aggiungere 500 μL tampone di lavaggio (6.7) alla colonna di recupero (6.6) e delicatamente risospendere la resina con la micropipetta (5.10).
- q) Centrifugare (5.1) la provetta con la colonna di recupero (6.6) a 12000 rpm per 1 minuto.
- r) Vuotare la provetta di raccolta (6.8).
- s) Centrifugare (5.1) di nuovo la provetta con la colonna di recupero (6.6) a 12000 rpm per 2 minuti, senza aggiungere altro liquido.
- t) Trasferire la colonna di recupero (6.6) in una nuova provetta di raccolta (6.8).
- u) Lasciare asciugare all'aria per 5 minuti.
- v) Risospendere delicatamente la resina in 100 μL di tampone di eluizione (6.9) con la micropipetta (5.10).
- w) Incubare a 55°C (±3°C) per 5 minuti in termoblocco (5.5).
- x) Centrifugare (5.1) a 12000 rpm per 1 minuto, eliminare la colonna di recupero (6.6), conservare la provetta (6.8) contenente il DNA.
- y) Gli estratti così preparati vengono definiti 'DNA/campione fecale' e conservati in congelatore (5.2). In tali condizioni possono essere conservati fino a 5 anni.

7.2.2 <u>Amplificazione PCR</u>

Dove non espressamente indicato mantenere le provette in ghiaccio, utilizzare puntali con barriera e indossare guanti monouso.

Ad ogni sessione è previsto l'utilizzo di un controllo positivo, ovvero DNA di riferimento (6.23), e di un controllo negativo, ovvero acqua (6.21), per verificare la corretta conduzione della reazione di amplificazione.

La seguente procedura prevede l'utilizzo di una PCR master mix a concentrazione 2x, in caso di concentrazione diversa modificare il protocollo secondo le specifiche del produttore.

- Scongelare: DNA/campioni fecali, 2x PCR MasterMix (6.10), Set A (6.12), controllo positivo di amplificazione (DNA di riferimento 6.23).
- b) Marcare con un numero progressivo una quantità adeguata di provette da PCR da 0,2 mL.
- c) Preparare un volume adeguato di miscela di amplificazione cumulativa. Calcolare i volumi sulla base della miscela di amplificazione del singolo campione (Tabella D) e del numero totale dei campioni da analizzare aumentato di due unità (una per il controllo positivo e una per il controllo negativo di amplificazione).

Tabella D. Miscela di amplificazione del singolo campione: componenti e relativi volumi

2x PCR MasterMix (6.10)	25 μL
H ₂ O (6.21)	19 µL
Set A (6.12)	1 μL
Totale	45 µL

- d) Mescolare la miscela di amplificazione mediante vortex (5.12) e se necessario centrifugare (5.1) al massimo dei giri per pochi secondi.
- e) Trasferire 45 μL della miscela di amplificazione cumulativa in ciascuna delle provette da PCR (punto 'b').
- f) Aggiungere in ogni provetta 5 µL di preparazione di DNA/campione fecale da analizzare.
- g) Chiudere le provette, mescolare mediante vortex e centrifugare (5.1) al massimo dei giri per pochi secondi.
- h) Avviare il ciclo di amplificazione (tabella E) del termociclatore (5.6), aspettare che la temperatura raggiunga 94°C e, dopo avere messo in pausa lo strumento, inserire le provette nel blocco termico.

rev. 3, 2024 pagina 8 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

Abbassare il coperchio e uscire dalla pausa.

Tabella E. Ciclo di amplificazione

Denaturazione iniziale #	3 min/94°C
Amplificazione	30 s/94°C 30 s/55°C 60 s/72°C
Numero di cicli	35
Estensione finale	7 min/72°C

[#] La durata della denaturazione iniziale può variare, verificare le specifiche del produttore della PCR Master Mix

- i) Finita la fase di amplificazione centrifugare (5.1) le provette al massimo dei giri per pochi secondi.
- l) Lasciare le provette in ghiaccio o in frigorifero (5.5) fino al momento di procedere con la Nested PCR (paragrafo 7.2.3).

7.2.3 Nested PCR

- a) Marcare con un numero progressivo una quantità adeguata di provette da PCR da 0,2 mL.
- b) Preparare un volume adeguato di miscela di amplificazione cumulativa. Calcolare i volumi sulla base della miscela di amplificazione del singolo campione (Tabella F) e del numero totale dei campioni da analizzare aumentato di una unità (per il controllo negativo di amplificazione).

Tabella F. Miscela di amplificazione del singolo campione: componenti e relativi volumi

2x PCR MasterMix (6.10)	25 μL
H ₂ O (6.21)	19 µL
Set B (6.13)	1 μL
Totale	45 μL

- c) Mescolare la miscela di amplificazione mediante vortex e se necessario centrifugare (5.1) al massimo dei giri per pochi secondi.
- d) Trasferire 45 μL della miscela di amplificazione cumulativa in ciascuna delle provette da PCR (punto 'a').
- e) Aggiungere in ogni provetta 5 µL di prodotto ottenuto dalla prima reazione di PCR (7.2.2 punto "I").
- f) Chiudere le provette, mescolare mediante vortex e centrifugare (5.1) al massimo dei giri per pochi secondi.
- g) Avviare il ciclo di amplificazione (Tabella G) del termociclatore (5.6), aspettare che la temperatura raggiunga 94°C e, dopo avere messo in pausa lo strumento, inserire le provette nel blocco termico. Abbassare il coperchio e uscire dalla pausa.

Tabella G. Ciclo di amplificazione

Denaturazione iniziale #	3 min/94°C
Amplificazione	30 s/94°C 30 s/53°C 60 s/72°C
Numero di cicli	35
Estensione finale	7 min/72°C

[#] La durata della denaturazione iniziale può variare, verificare le specifiche del produttore della PCR Master Mix

 Finita la fase di amplificazione (nested PCR) centrifugare (5.1) le provette al massimo dei giri per pochi secondi.

rev. 3, 2024 pagina 9 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

i) Lasciare le provette in ghiaccio o in frigorifero (5.7) fino al momento dell'elettroforesi.

7.2.4 Visualizzazione dei risultati

L'analisi verrà condotta primariamente mediante elettroforesi capillare. Nel caso in cui il numero dei campioni da analizzare sia inferiore a 8, oppure lo strumento per l'elettroforesi capillare sia fuori servizio, si potrà procedere mediante elettroforesi su gel d'agarosio.

- Accendere lo strumento Qiaxcel (5.16) ed il relativo software di gestione Qiaxcel ScreenGel sul PC collegato.
- b) Accedere al pannello "Process Profile"; indicare "DNA HighRes" alla voce "Cartridge Type"; indicare il profilo e l'Experiment Directory desiderati.
- c) Spostare il carrello porta provette in "posizione di accesso" selezionando la voce "Load Position" dal pannello "Status Information".
- d) Inserire nella posizione MARKER1 le 12 provette contenenti almeno 10 μL (volume minimo) di "Alignment Marker" (6.28) prescelto e riportare il carrello nella posizione iniziale selezionando la voce "Park Position" dal pannello "Status Information".
- e) Posizionare i campioni da analizzare (volume minimo 10 μL) per file complete da 12 a partire dalla riga "A". Qualora i campioni da analizzare non fossero in numero sufficiente a completare la fila da 12, aggiungere un opportuno numero di provette contenenti il QX DNA diluition buffer (volume minimo 10 μL) in dotazione con il QIAxcel DNA High Resolution kit (6.27).
- f) Per ogni round di analisi (che può comprendere fino ad un massimo di 8 corse da 12 campioni) includere una provetta contenente il DNA size marker (6.29).
- g) In "Run Parameters" impostare l'opzione 0M500 alla voce "Method"; selezionare le corse occupate da campioni sulla piastra virtuale nel pannello laterale "Sample Row Selection".
- h) In "Sample Selection" impostare i parametri di corsa come segue:
 - "Plate ID": inserire il codice del primo e dell'ultimo dei campioni presenti nella piastra.
 - "Alignment Marker": selezionare l'alignment marker (6.28) prescelto.
- i) In "Sample Information" lasciare in bianco o in alternativa inserire i nomi dei singoli campioni nelle caselle corrispondenti.
- j) In "Run Check" verificare che tutte le righe selezionate siano occupate da provette contenenti prodotti di PCR da analizzare o QX DNA dilution buffer e che il Marker di allineamento sia stato caricato, quindi spuntare le caselle apposite; infine selezionare "Run".
- Visualizzare le corse selezionando la modalità "Absolute migration time" dal menù "Image options" e processare i dati con il comando "Start analysis".
- Scorrere gli elettroferogrammi dei singoli campioni per verificare la presenza di picchi al di sopra della banda più alta del marker di allineamento (6.28). Eliminare i picchi inferiori e superiori a quelli del marker di allineamento. Al termine di questa operazione riprocessare i dati con il comando "reprocess" del menu "Analysis"
- m) Stampare il risultato della corsa elettroforetica
- n) Chiudere il programma e spegnere lo strumento.

Se lo strumento Qiaxcel (5.16) è fuori servizio per un periodo prolungato procedere con elettroforesi su gel di agarosio seguendo il protocollo di seguito riportato:

- a) Assemblare l'apparato per elettroforesi (5.8) seguendo le raccomandazioni della ditta produttrice. Nella preparazione del gel utilizzare un pettine adequato al numero di campioni in esame.
- b) Pesare (5.13) 2 g di agarosio (6.15) e versarlo in 100 mL di TAE 1x (6.17) preparato in un contenitore di vetro.
- c) Risospendere delicatamente la polvere mediante rotazione.
- d) Portare la sospensione di agarosio ad ebollizione per circa 30 sec. Se all'ispezione visiva la soluzione non appare omogenea continuare la fase di ebollizione per altri 30 sec.
- e) Reintegrare con acqua il volume perso durante l'ebollizione.
- f) Lasciare raffreddare la soluzione di agarosio.

rev. 3, 2024 pagina 10 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

- Prima che la soluzione cominci a solidificare aggiungere l'intercalante del DNA (6.18) secondo le g) specifiche del produttore.
- Agitare delicatamente per disperdere uniformemente l'intercalante del DNA e versare l'agarosio h) nel piatto per il gel preparato in precedenza (punto "a").
- Aspettare che il gel si solidifichi; non meno di 30 minuti.
- j) Collocare il piatto contenente il gel nel sistema per elettroforesi.
- k) Coprire il gel con tampone TAE 1x (6.17).
- Caricare in ogni pozzetto 10 µL del prodotto di amplificazione (7.2.3 punto "i") seguendo il numero progressivo di marcatura delle provette (7.2.3 punto "a").
- Caricare il primo e l'ultimo pozzetto con 10 µL della soluzione L100 (6.20). m)
- Connettere l'apparato per elettroforesi con l'alimentatore (5.8) e impostare un valore di tensione di 10 v/cm di gel.
- Lasciare il gel sotto tensione per circa 30 minuti o fino a guando il colorante più veloce contenuto nel loading buffer non raggiunge 1 cm dal bordo del gel.
- Dopo 30 minuti, controllare sul transilluminatore UV (5.14) la separazione delle bande. La corsa elettroforetica è ritenuta sufficiente se è possibile distinguere facilmente tutte le bande del marcatore di pesi molecolari compresi tra 250 e 2000 bp. Se la separazione è insufficiente, lasciare il gel sotto tensione fino ad avere una separazione adeguata.
- A corsa conclusa trasferire il gel nel sistema di acquisizione di immagini (5.9) ed effettuare una stampa del risultato.

Interpretazione dei risultati delle amplificazioni nested PCR 7.2.5

Il test di amplificazione sarà ritenuto valido se:

- il controllo positivo di amplificazione mostra un prodotto di amplificazione di 511 paia di basi, come atteso;
- il controllo negativo di amplificazione non mostra prodotti di amplificazione o eventualmente solo bande riferibili agli oligonucleotidi inutilizzati e/o a loro derivati (primer dimer);
- il controllo positivo di estrazione produce un prodotto di amplificazione di 511 paia di basi, come atteso.

Nell'analisi dei dati vengono prese in considerazione solo le bande che soddisfano i seguenti requisiti:

- 1) dimensioni superiori a 50 bp;
- 2) comprese all'interno delle due bande dell'Alignment marker (6.28):
- 3) intensità del picco di emissione superiore ad un valore soglia del 5%.

Nel caso siano presenti picchi di emissione sovrapposti viene preso in considerazione solo quello con valore maggiore, se i valori sono simili il campione viene scartato.

Le dimensioni dei prodotti di amplificazione vengono valutate nei seguenti modi:

- Mediante comparazione visiva delle bande con i pesi molecolari del "DNA size marker" (6.29) e con i controlli positivi di estrazione ed amplificazione sul gel virtuale;
- Mediante confronto tra le dimensioni delle bande ottenute calcolate dal software dello strumento con la dimensione attesa.

Le dimensioni delle bande di amplificazione (511 paia di basi) evidenziate dall'elettroforesi vengono valutate per comparazione delle stesse con i pesi molecolari di riferimento L100 (6.20) e con i controlli positivi di estrazione e amplificazione. La valutazione visiva viene ritenuta sufficiente ed adequata.

Qualora un campione mostri bande differenti dalle attese, la successiva digestione enzimatica per l'identificazione a livello di assemblaggio non sarà eseguita, il risultato della prova viene espresso come "assemblaggio non determinabile"...

Se un campione di prova non mostra amplificazione, DNA di riferimento (6.23) verrà aggiunto al DNA

rev. 3, 2024 pagina 11 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

del campione di prova ed amplificato secondo quanto descritto nei paragrafi 7.2.6 allo scopo di escludere la presenza di inibitori. Qualora non si osservi l'amplificazione del frammento specifico di 511 paia di basi, il risultato della prova sarà espresso come "assemblaggio non determinabile".

7.2.6 Verifica della presenza di inibitori tramite PCR

Dove non espressamente indicato le provette sono mantenute in ghiaccio o in un supporto refrigerante. Dove non espressamente indicato utilizzare puntali con barriera e indossare quanti monouso.

Ad ogni sessione è previsto l'utilizzo di un controllo positivo ovvero DNA trofozoita di riferimento (6.23) per verificare la corretta conduzione della reazione di amplificazione.

La seguente procedura prevede l'utilizzo di una PCR master mix a concentrazione 2x, in caso di concentrazione diversa modificare il protocollo secondo le specifiche del produttore.

- a) Scongelare: DNA/campioni fecali (7.2.1 punto y), 2x PCR MasterMix (6.10), Set A (6.12), controllo positivo di amplificazione (DNA di riferimento 6.23).
- b) Marcare con un numero progressivo una quantità adeguata di provette da PCR da 0,2 mL.
- c) Preparare un volume adeguato di miscela di amplificazione cumulativa. Calcolare i volumi sulla base della miscela di amplificazione del singolo campione (tabella H) e del numero totale dei campioni da analizzare aumentato di due unità (una per il controllo positivo, una per il controllo negativo di amplificazione).

Tabella H. Miscela di amplificazione del singolo campione: componenti e relativi volumi

2x PCR MasterMix (6.10)	25 µL
H ₂ O (6.21)	14 µL
Set A (6.12)	1 μL
DNA di riferimento (6.23)	5 μL
Totale	45 µL

- d) Mescolare la miscela di amplificazione mediante vortex e se necessario centrifugare (5.1) al massimo dei giri per pochi secondi.
- e) Trasferire 45 µL della miscela di amplificazione cumulativa (7.2.6 punto c) in ciascuna delle provette da PCR.
- f) Aggiungere in ciascuna provetta 5 μL del DNA/campione fecale (7.2.1 punto y) da analizzare, nel controllo positivo aggiungere 5 μL di acqua (6.23).
- g) Chiudere le provette, e centrifugare (5.1) al massimo dei giri per pochi secondi.
- h) Avviare il ciclo di amplificazione del termociclatore (5.4) secondo il programma descritto in tabella E, al paragrafo 7.2.2. Aspettare che la temperatura raggiunga 95°C e dopo avere messo in pausa lo strumento, inserire le provette nel blocco termico. Abbassare il coperchio e uscire dalla pausa.
- i) Finita la fase di amplificazione centrifugare (5.1) le provette al massimo dei giri per pochi secondi.
- j) Lasciare le provette in ghiaccio o in frigorifero (5.5) fino al momento di procedere con la Nested PCR, paragrafo 7.2.3.

7.2.7 Visualizzazione dei risultati

Per la visualizzazione dei risultati, seguire la procedura descritta al punto 7.2.4.

7.2.8 Interpretazione dei risultati dell'amplificazione PCR per la verifica della presenza di inibitori.

Per l'interpretazione dei risultati, seguire la procedura descritta al punto 7.2.5.

Il test di amplificazione sarà ritenuto valido se:

- il controllo positivo di amplificazione mostra un prodotto di amplificazione in accordo con l'atteso (511 paia di basi);
- ii) il controllo negativo di amplificazione non mostra prodotti di amplificazione o eventualmente solo bande riferibili agli oligonucleotidi inutilizzati e/o a loro derivati (primer dimer).

rev. 3, 2024 pagina 12 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

Qualora si osservi l'amplificazione del frammento di 511 paia di basi, il campione verrà considerato privo di inibitori della PCR e ritenuto negativo per la presenza di DNA di *Giardia*, l'identificazione a livello di assemblaggio non sarà possibile e il risultato della prova viene espresso come "assemblaggio non determinabile".

7.2.9 <u>Digestione enzimatica con endonucleasi</u>

Dove non espressamente indicato, le provette sono mantenute in ghiaccio.

Ad ogni sessione è prevista la digestione enzimatica con l'enzima di restrizione *Haelll* (6.24). Inoltre viene utilizzato un controllo positivo, ovvero il prodotto di amplificazione del DNA fecale di riferimento (6.23), per verificare la corretta conduzione della reazione di digestione.

La seguente procedura prevede l'utilizzo di enzimi di restrizione (6.24) concentrati $10 \text{ U/}\mu\text{L}$ e tamponi di restrizione concentrati 10x. In caso di concentrazione diversa, modificare il protocollo secondo le specifiche del produttore.

- Scongelare i prodotti di PCR ed il tampone di restrizione 10x (6.25). Mantenere in ghiaccio l'enzima di restrizione (6.24)
- b) Marcare con un numero progressivo una quantità adeguata di provette da 0,2 mL.
- c) Preparare un volume adeguato di miscela di digestione cumulativa. Calcolare i volumi sulla base della miscela di digestione del singolo campione (Tabella H) e del numero totale dei campioni da analizzare comprensivo del controllo positivo.

Tabella H. Miscela di digestione del singolo campione: componenti e relativi volumi

10x tampone di restrizione (6.25)	2 μL
Enzima di restrizione (6.24)	1 μL (10U)
Prodotti di PCR (7.2.3 punto "i")	10 μL
H ₂ O (6.21)	7 μL
Totale	20 μL

- d) Mescolare ciascuna miscela di digestione mediante vortex e, se necessario, centrifugare (5.1) al massimo dei giri per pochi secondi.
- e) Trasferire 10 μL della miscela di digestione cumulativa (punto "c") in ciascuna delle provette da 0,2 ml
- f) Aggiungere in ogni provetta 10 μL di prodotto di nested PCR (7.2.3 punto "i") da analizzare.
- g) Chiudere le provette, mescolare mediante vortex e centrifugare (5.1) al massimo dei giri per pochi secondi.
- h) Incubare i campioni a 37°C nel termoblocco (5.5) senza agitazione per 3 h.
- i) Finita l'incubazione, centrifugare (5.1) le provette al massimo dei giri per pochi secondi.
- n) Lasciare le provette in ghiaccio o in frigorifero (5.7) fino al momento dell'elettroforesi.

7.2.10 Visualizzazione dei risultati

La visualizzazione dei risultati della digestione enzimatica è effettuata come riportato nel paragrafo 7.2.4.

7.2.11 Interpretazione dei risultati della digestione enzimatica

L'interpretazione dei risultati della digestione enzimatica è effettuata come riportato nel paragrafo 7.2.5.

Nel caso dell'assemblaggio B, è accettabile la mancata risoluzione delle due bande da 26 e 24 bp che possono apparire come un'unica banda.

Le dimensioni delle bande di digestione evidenziate dall'elettroforesi vengono valutate per comparazione delle stesse con i pesi molecolari di riferimento DNA size marker (6.29) o L50 (6.19) e con il controllo di digestione. Considerato che le differenze tra gli assemblaggi sono evidenti (vedi tabella A) la valutazione visiva viene ritenuta sufficiente ed adeguata.

rev. 3, 2024 pagina 13 of 14

Dipartimento di Malattie Infettive Reparto di Parassitosi Alimentari e Neglette

Istituto Superiore di Sanità

Il test sarà ritenuto valido se il controllo positivo di digestione mostra un profilo di bande di digestione in accordo con la tabella A.

L'identificazione degli assemblaggi viene effettuata confrontando le dimensioni dei frammenti prodotti dalle singole digestioni del campione di prova con la tabella A.

Qualora un campione mostri una banda non attesa, l'identificazione a livello di assemblaggio non sarà possibile e il risultato della prova viene espresso come "assemblaggio non determinabile"..

8 ESPRESSIONE DEI RISULTATI

Esprimere i risultati nel rapporto di prova secondo le seguenti modalità:

Se il profilo delle bande di digestione con Haell è 201, 150, 110, 50 bp, allora il campione è identificato come *G. duodenalis* assemblaggio A.

Se il profilo delle bande di digestione con Haell è 150, 117, 110, 84, 26, 24 bp, allora il campione è identificato come *G. duodenalis* assemblaggio B.

Se il profilo delle bande di digestione con Haell è 194, 150, 102, 50, 15 bp, allora il campione è identificato come *G. duodenalis* assemblaggio *C.*

Se il profilo delle bande di digestione con Haell è 200, 194, 117 bp, allora il campione è identificato come *G. duodenalis* assemblaggio D.

Se il profilo delle bande di digestione con Haell è 186, 150, 110, 26, 24, 15 bp, allora il campione è identificato come *G. duodenalis* assemblaggio E.

Se il profilo delle bande di digestione con Haell è 186, 150, 110, 50, 15 bp, allora il campione è identificato come *G. duodenalis* assemblaggio F.

Se il profilo delle bande di digestione con Haell è 194, 165, 102, 50 bp, allora il campione è identificato come *G. duodenalis* assemblaggio G.

Qualora il test risulti valido ed il campione analizzato mostri bande di digestione non classificabili tra quelle presenti in tabella A, l'identificazione a livello di assemblaggio non sarà possibile e il risultato della prova viene espresso come "assemblaggio non determinabile".

9 CARATTERISTICHE DEL METODO

Il presente metodo è stato caratterizzato in termini di sensibilità, specificità e ripetibilità. I risultati sono stati utilizzati per confermare che il metodo è adatto allo scopo previsto e sono riportati nel relativo fascicolo di validazione, al quale si rimanda.

10 MISURE DI SICUREZZA DA OSSERVARE

Il presente metodo di prova può essere eseguito solo da personale autorizzato.

I dispositivi individuali di protezione sono rappresentati da guanti monouso e camice.

Per il comportamento generale da adottare da parte degli operatori, sia per la manipolazione di campioni e reagenti che per la gestione dei rifiuti, fare riferimento ai manuali emessi dal *Servizio di Prevenzione* e *Sicurezza del Lavoro* dell'Istituto, a disposizione del personale dei laboratori e visionabili sul sito: https://lfintranet.iss.it/web/guest/spp-sistema-di-gestione-della-salute-e-sicurezza.

rev. 3, 2024 pagina 14 of 14